3,302 research outputs found

    Atomistic Molecular Dynamic Simulation of Dilute Poly(acrylic acid) Solution: Effects of Simulation Size Sensitivity and Ionic Strength

    Get PDF
    Physical properties of polyelectrolytes have been shown to be significantly related to their chain conformations. Atomistic simulation has been used as an effective method for studying polymer chain structures, but few simulations have focused on the effects of chain length and tacticity in the presence of monovalent salts. This paper investigated the microscopic conformation behaviors of poly(acrylic acid) (PAA) with different chain sizes, tacticities, and sodium chloride concentrations. The hydrogen behaviors and corresponding radial distribution functions were obtained. The results showed that the increase of salt concentrations led to the collapse of PAA chains, especially for longer chains. It was found that the effects of salt were mainly attributed to the shielding screening effect by sodium ions rather than the hydrogen bonding effect. Two different structures were formed by isotactic PAA and syndiotactic PAA, respectively, which were due to the deprotonation patterns along the PAA chain

    A survey of parametric modelling methods for designing the head of a high-speed train

    Get PDF
    With the continuous increase of the running speed, the head shape of the high-speed train (HST) turns out to be a critical factor for further speed boost. In order to cut down the time used in the HST head design and improve the modelling efficiency, various parametric modelling methods have been widely applied in the optimization design of the HST head to obtain an optimal head shape so that the aerodynamic effect acting on the head of HSTs can be reduced and more energy can be saved. This paper reviews these parametric modelling methods and classifies them into four categories: 2D, 3D, CATIA-based, and mesh deformation-based parametric modelling methods. Each of the methods is introduced, and the advantages and disadvantages of these methods are identified. The simulation results are presented to demonstrate that the aerodynamic performance of the optimal models constructed by these parametric modelling methods has been improved when compared with numerical calculation results of the original models or the prototype models of running trains. Since different parametric modelling methods used different original models and optimization methods, few publications could be found which compare the simulation results of the aerodynamic performance among different parametric modelling methods. In spite of this, these parametric modelling methods indicate more local shape details will lead to more accurate simulation results, and fewer design variables will result in higher computational efficiency. Therefore, the ability of describing more local shape details with fewer design variables could serve as a main specification to assess the performance of various parametric modelling methods. The future research directions may concentrate on how to improve such ability

    Microbial fuel cells: a green and alternative source for bioenergy production

    Get PDF
    Microbial fuel cell (MFC) represents one of the green technologies for the production of bioenergy. MFCs using microalgae produce bioenergy by converting solar energy into electrical energy as a function of metabolic and anabolic pathways of the cells. In the MFCs with bacteria, bioenergy is generated as a result of the organic substrate oxidation. MFCs have received high attention from researchers in the last years due to the simplicity of the process, the absence in toxic by-products, and low requirements for the algae growth. Many studies have been conducted on MFC and investigated the factors affecting the MFC performance. In the current chapter, the performance of MFC in producing bioenergy as well as the factors which influence the efficacy of MFCs is discussed. It appears that the main factors affecting MFC’s performance include bacterial and algae species, pH, temperature, salinity, substrate, mechanism of electron transfer in an anodic chamber, electrodes materials, surface area, and electron acceptor in a cathodic chamber. These factors are becoming more influential and might lead to overproduction of bioenergy when they are optimized using response surface methodology (RSM)

    Molecular Dynamics Simulation of the Salinity Effect on the n-Decane/Water/Vapor Interfacial Equilibrium

    Get PDF
    Low-salinity water flooding of formation water in rock cores is, potentially, a promising technique for enhanced oil recovery (EOR), but details of the underlying mechanisms remain unclear. The salinity effect on the interface between water and oil was investigated here using the molecular dynamics (MD) simulation method. n-Decane was selected as a representative oil component, and SPC/E water and all-atom optimized potentials for liquid simulations (OPLS-AA) force fields were used to describe the water/oil/ionic interactions for saltwater and n-decane molecules. Equilibrium MD simulations were first conducted to study the n-decane/vapor and saltwater/vapor interface systems at six different NaCl concentrations (0, 0.05, 0.10, 0.20, 0.50, and 1.00 M). The water/oil interface was then investigated by calculating bulk density distribution, radial distribution function, interface thickness, and water/oil interfacial tension (IFT). Sufficiently long MD simulations of water/n-decane/vapor were performed, followed by an analysis of the effect of salinity on the water/oil/vapor interface. The IFT values for the water/vacuum interface, n-decane/vacuum interface, and water/n-decane interface were obtained from the pressure tensor distribution after system equilibration, with values of 71.4, 20.5, and 65.3 mN/m, respectively, which agree well with experimental and numerical results reported in the literature. An optimal salinity of ∼0.20 M was identified corresponding to a maximum interfacial thickness between water and the oil phase, which results in a minimum water/oil IFT value and a maximum value for the oil/water contact angle, a condition beneficial for EOR

    Multi-seeded melt growth (MSMG) of bulk Y-Ba-Cu-O using thin-film seeds

    Full text link
    Y-Ba-Cu-O (YBCO) and Sm-Ba-Cu-O (SmBCO) thin films have been used for the first time as heterogeneous seeds to multi-seed successfully the melt growth of bulk YBCO in a multi-seeded melt growth (MSMG) process. The use of thin film seeds, which may be prepared with highly controlled orientation (i.e. with a well-defined a-b plane and precisely known a-direction), is based on their superheating properties and reduces significantly contamination of the bulk sample by the seed material. A variety of grain boundaries were obtained by varying the angle between the seeds. Microstructural studies indicate that the extent of residual melt deposited at the grain boundary decreases with increasing grain boundary contact angle. It is established that the growth front proceeds continuously at the (110)/(110) grain boundary without trapping liquid, which leads to the formation of a clean grain boundary

    Photon Management in Two-Dimensional Disordered Media

    Full text link
    Elaborating reliable and versatile strategies for efficient light coupling between free space and thin films is of crucial importance for new technologies in energy efficiency. Nanostructured materials have opened unprecedented opportunities for light management, notably in thin-film solar cells. Efficient coherent light trapping has been accomplished through the careful design of plasmonic nanoparticles and gratings, resonant dielectric particles and photonic crystals. Alternative approaches have used randomly-textured surfaces as strong light diffusers to benefit from their broadband and wide-angle properties. Here, we propose a new strategy for photon management in thin films that combines both advantages of an efficient trapping due to coherent optical effects and broadband/wide-angle properties due to disorder. Our approach consists in the excitation of electromagnetic modes formed by multiple light scattering and wave interference in two-dimensional random media. We show, by numerical calculations, that the spectral and angular responses of thin films containing disordered photonic patterns are intimately related to the in-plane light transport process and can be tuned through structural correlations. Our findings, which are applicable to all waves, are particularly suited for improving the absorption efficiency of thin-film solar cells and can provide a novel approach for high-extraction efficiency light-emitting diodes

    Identity-by-descent filtering as a tool for the identification of disease alleles in exome sequence data from distant relatives

    Get PDF
    Large-scale, deep resequencing may be the next logical step in the genetic investigation of common complex diseases. Because each individual is likely to carry many thousands of variants, the identification of causal alleles requires an efficient strategy to reduce the number of candidate variants. Under many genetic models, causal alleles can be expected to reside within identity-by-descent (IBD) regions shared by affected relatives. In distant relatives, IBD regions constitute a small portion of the genome and can thus greatly reduce the search space for causal alleles. However, the effectiveness of this strategy is unknown. We test the simulated mini-exome data set in extended pedigrees provided by Genetic Analysis Workshop 17. At the fourth- and fifth-degree level of relatedness, case-case pairs shared between 1% and 9% of the genome identical by descent. As expected, no genes were shared identical by descent by all case subjects, but 43 genes were shared by many case subjects across at least 50 replicates. We filtered variants in these genes based on population frequency, function, informativeness, and evidence of association using the family-based association test. This analysis highlighted five genes previously implicated in triglyceride, lipid, and cholesterol metabolism. Comparison with the list of true risk alleles revealed that strict IBD filtering followed by association testing of the rarest alleles was the most sensitive strategy. IBD filtering may be a useful strategy for narrowing down the list of candidate variants in exome data, but the optimal degree of relatedness of affected pairs will depend on the genetic architecture of the disease under study

    Spatio-Temporal Characteristics of Global Warming in the Tibetan Plateau during the Last 50 Years Based on a Generalised Temperature Zone - Elevation Model

    Get PDF
    Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions
    corecore